Kunstig intelligens (KI) kan endre dagens kjøreopplæring fullstendig. Det er også målet for et samarbeid mellom NTNU, IT-selskapet Virtur og Way AS i Trondheim, som er Norges eneste simulatorbaserte kjøreskole.
Sammen har de utviklet et system og en KI-kjørelærer som kan lære elever å kjøre i en fullskala bil-simulator.
Nøytral lærer, personlig opplæring
Den virtuelle kjørelæreren er i stand til umiddelbart å vurdere prestasjonene til eleven som sitter bak rattet. Den kan også gi helt nøytrale tilbakemeldinger i sanntid.
Dermed får man luket vekk, eller dempet, eventuelle personlige oppfatninger av eleven, som fort kan farge tilbakemeldingene en virkelig lærer gir i en en-til-en situasjon.
– KI-sjåførlæreren er fullt på nivå med en menneskelig kjørelærer når det kommer til systematisk evaluering av elever, sier Odd Erik Gundersen, som er førsteamanuensis ved Institutt for datateknologi og informatikk ved NTNU.
Hvert år dør 1,2 millioner i trafikken
Bakteppet for den nye forskningen er at nesten 1,2 millioner mennesker dør i trafikkulykker hvert år, ifølge Verdens helseorganisasjon. Dette er den vanligste dødsårsaken for barn og unge mellom 5 og 29 år. De yngste sjåførene er mest utsatt. Menn har tre ganger høyere sannsynlighet enn kvinner for å bli drept i trafikkulykker.
Selv små forbedringer kan spare mange liv. Mens FN har som mål å halvere antall trafikkdrepte innen 2030, vil EU ha tallet nærmest mulig null innen 2050.
I Norge døde 118 personer i trafikken i 2023, ifølge Statens vegvesen. Utviklingen de siste to årene har gått gal vei, så også her i landet skjerper myndighetene innsatsen for bedre trafikksikkerhet.
Trent på 477 scenarier
Én mulighet til forbedring er bedre kjøreopplæring, mener NTNU-forskerne. Systemet de har utviklet, bygger på i alt 477 kjøre-scenarier for tre ulike trafikksituasjoner:
- forbikjøringer
- bykjøring med større lyskryss
- rundkjøringer og ulike vikepliktsituasjoner
Målet har vært at systemet, altså den virtuelle læreren, skulle kunne trenes til nøyaktig og objektivt å vurdere ulike kjørescenarier. Samtidig skulle den ha like gode ferdigheter og gi like presise tilbakemeldinger som ekte eksperter på trafikkopplæring.
For å trene og teste den virtuelle læreren opp mot virkelig opplæring, har 21 faktiske kjøreskole-elever og syv lærere utført økter i simulator.
Maskin og menneske – like presise
– Resultatene viser at vurderingene og tilbakemeldingene fra KI-læreren og de virkelige ekspertene stemmer meget godt overens i disse situasjonene. Dette bekrefter at systemet kan prestere like presist som menneskelige eksperter, heter det i studien «A virtual driving instructor that assesses driving performance on par with human experts».
De siste årene har interessen for kjøreopplæring i simulatorer med virtuelle lærere vokst i takt med stadig bedre teknologi og billigere maskinvare.
Men selv om fordelene er mange, er det så langt gjort forholdsvis lite forskning på KI-kjøreopplæring. Mye av oppmerksomheten på feltet rettes i stedet mot utvikling av selvkjørende biler.
Øve på elg midt i veien?
Gundersen ønsker at forskningen deres kan være med og løfte utviklingen av virtuell kjøreopplæring.
– Ved opplæring i en simulator er det lettere å standardisere og personliggjøre kjørelæringen. Samtidig kan man også være sikker på at alle sjåførene kan håndtere ulike situasjoner. Også uvanlige og farlige situasjoner, som ikke kan testes i den virkelige verden, kan trenes på i en simulator, sier han.
… og endre miljø etter behov
Videre kan det virtuelle miljøet rundt føreren endres etter behov. Alt fra kompliserte trafikksituasjoner i storbyen til landeveiskjøring kan tilpasses den enkelte elev.
KI-kjørelæreren kan for eksempel velge situasjoner som eleven trenger å trene ekstra på. Siden stress generelt minker evnen vi har til å lære, er det også mulig å fjerne trafikk eller andre stressfaktorer underveis.
Forskerne har også vist at tilbakemeldingene fra læreren kan skreddersys til en læringsstil som passer eleven best.
Mindre prislapp på lappen?
Mye av dette er ikke mulig i dagens opplæring med eleven bak rattet og læreren i setet ved siden av, understreker forskerne. De mener også at helautomatisk opplæring kan gjøre det billigere å ta lappen.
Det er et omfattende og komplisert programmeringsarbeid som ligger bak utviklingen av denne typen datamodeller. Systemet NTNU-forskerne, kjørelærere og IT-folk har utviklet, består av et vurderingssystem og et veiledningssystem. Det første er i stor grad utformet som et regelbasert system, der KI bruker forhåndsbestemte regler til å ta beslutninger.
Maskiner forklarer og begrunner
Dette er forskjellig fra ren maskinlæring, som krever at modellene mates med enorme mengder data for å trenes opp til å handle slik vi ønsker.
Den virtuelle kjørelæreren krever et regelbasert system, der det er enkelt å finne støtte for, og forklaringer på, beslutningene den tar.
Det er fordi den ikke bare skal vurdere elevens kjøreprestasjoner. Den skal også forklare og begrunne gode eller dårlige tilbakemeldinger og fortelle hva eleven må jobbe bedre med.
Like god som menneske-kollegaen
Lyskryss, rundkjøringer og forbikjøringer er de mest krevende situasjonene for dem som skal ta førerkort.
Vurderingene systemet gjør av elevene, viser svært godt samsvar med vurderingene som profesjonelle kjørelærere gir, ifølge studien. KI-kjørelæreren er også like nøyaktig som en ekte lærer til å identifisere og melde tilbake om både gode og dårlige valg eleven tar.
Siden det finnes lite forskning som vurderer simulatoropplæring for førerkort, mener NTNU-forskerne at de nå har bidratt til å tette et kunnskapshull.
Nærmeste nabo til havvindpark vil heller ha strøm fra land
Koster tid og penger
– Allikevel, det finnes begrensninger. Som med et hvert regelbasert system som dette, møter også vår plattform noen krevende utfordringer, skriver forskerne.
Det handler for eksempel om den kompliserte prosessen med å utvikle og styre et omfattende og intrikat sett av regler som skal fange opp de mange ulike situasjonene en sjåfør møter i trafikken. Dette gjør at utvikling og vedlikehold av systemet kan bli både tidkrevende og kostbart.
Sitter i en vanlig bil
De 21 elevene i prosjektet har kjørt tre testrunder hver. De sitter i en vanlig utstyrt bil og bruker ratt og pedaler som vanlig.
Men i stedet for å rulle ut i trafikken, står bilen montert på en bevegelig plattform omgitt av prosjektorer med et virtuelt trafikkmiljø på alle kanter. Et kamera fanger opp alt elevene gjør, til og med hvordan de beveger øynene under kjøretimen.
Samarbeidspartnerne fra NTNU, Way og Virtur ønsker å gjøre systemet enda bedre ved å ta i bruk det siste innen virtuell og blandet virkelighet, såkalt Mixed Reality (MR).
MR er en fremvoksende teknologi, der brukerne kan ta på seg hodesett med avansert øyesporingsteknologi som gir en blanding av virtuell virkelighet (Virtual Reality – VR) og utvidet virkelighet (Augmented Reality – AR).
Reglene bremser KI-læreren
Forskerne mener dette vil gi rom for enda mer personlig, effektiv og skreddersydd opplæring tilpasset hver enkelt. Den som trenger å trene på rundkjøringer, kan gjøre unna 30 slike på 30 minutter. De mener arbeidet deres belyser de enorme mulighetene bruk av kunstig intelligens har for å revolusjonere trafikkopplæringen. De går så langt som til å kalle det et
– Men hva må til for at den digitale kjørelæreren rykker inn i norske kjøreskolebiler?
– I Norge sier forskriftene at opplæringen må gjøres i en bil – altså at den ikke kan gjøres i en simulator. Så om dette skal endre hvordan opplæringen faktisk blir gjort, må forskriftene endres, sier Gundersen.
Artikkelen ble først publisert på Gemini.no
Et drømmescenario for en ny energimerke-ordning